{
"prefix": "# Path: codeviz\\\\app.py\\n# Compare this snippet from codeviz\\\\predictions.py:\\n# import json\\n# import sys\\n# import time\\n# from manifest import Manifest\\n# \\n# sys.path.append(__file__ + \\"/..\\")\\n# from common import module_codes, module_deps, module_categories, data_dir, cur_dir\\n# \\n# gold_annots = json.loads(open(data_dir / \\"gold_annotations.js\\").read().replace(\\"let gold_annotations = \\", \\"\\"))\\n# \\n# M = Manifest(\\n# client_name = \\"openai\\",\\n# client_connection = open(cur_dir / \\".openai-api-key\\").read().strip(),\\n# cache_name = \\"sqlite\\",\\n# cache_connection = \\"codeviz_openai_cache.db\\",\\n# engine = \\"code-davinci-002\\",\\n# )\\n# \\n# def predict_with_retries(*args, **kwargs):\\n# for _ in range(5):\\n# try:\\n# return M.run(*args, **kwargs)\\n# except Exception as e:\\n# if \\"too many requests\\" in str(e).lower():\\n# print(\\"Too many requests, waiting 30 seconds...\\")\\n# time.sleep(30)\\n# continue\\n# else:\\n# raise e\\n# raise Exception(\\"Too many retries\\")\\n# \\n# def collect_module_prediction_context(module_id):\\n# module_exports = module_deps[module_id][\\"exports\\"]\\n# module_exports = [m for m in module_exports if m != \\"default\\" and \\"complex-export\\" not in m]\\n# if len(module_exports) == 0:\\n# module_exports = \\"\\"\\n# else:\\n# module_exports = \\"It exports the following symbols: \\" + \\", \\".join(module_exports)\\n# \\n# # get module snippet\\n# module_code_snippet = module_codes[module_id]\\n# # snip to first 50 lines:\\n# module_code_snippet = module_code_snippet.split(\\"\\\\n\\")\\n# if len(module_code_snippet) > 50:\\n# module_code_snippet = \\"\\\\n\\".join(module_code_snippet[:50]) + \\"\\\\n...\\"\\n# else:\\n# module_code_snippet = \\"\\\\n\\".join(module_code_snippet)\\n# \\n# return {\\"exports\\": module_exports, \\"snippet\\": module_code_snippet}\\n# \\n# #### Name prediction ####\\n# \\n# def _get_prompt_for_module_name_prediction(module_id):\\n# context = collect_module_prediction_context(module_id)\\n# module_exports = context[\\"exports\\"]\\n# module_code_snippet = context[\\"snippet\\"]\\n# \\n# prompt = f\\"\\"\\"\\\\\\n# Consider the code snippet of an unmodule named.\\n# \\nimport json\\nfrom flask import Flask, render_template, request, send_from_directory\\nfrom common import *\\nfrom predictions import predict_snippet_description, predict_module_name\\n\\napp = Flask(__name__)\\n\\[email protected]('/')\\ndef home():\\n return render_template('code-viz.html')\\n\\[email protected]('/data/<path:filename>')\\ndef get_data_files(filename):\\n return send_from_directory(data_dir, filename)\\n\\[email protected]('/api/describe_snippet', methods=['POST'])\\ndef describe_snippet():\\n module_id = request.json['module_id']\\n module_name = request.json['module_name']\\n snippet = request.json['snippet']\\n description = predict_snippet_description(\\n module_id,\\n module_name,\\n snippet,\\n )\\n return json.dumps({'description': description})\\n\\n# predict name of a module given its id\\[email protected]('/api/predict_module_name', methods=['POST'])\\ndef suggest_module_name():\\n module_id = request.json['module_id']\\n module_name = predict_module_name(module_id)\\n",
"suffix": "if __name__ == '__main__':\\r\\n app.run(debug=True)",
"isFimEnabled": true,
"promptElementRanges": [
{ "kind": "PathMarker", "start": 0, "end": 23 },
{ "kind": "SimilarFile", "start": 23, "end": 2219 },
{ "kind": "BeforeCursor", "start": 2219, "end": 3142 }
]
}
Expanded:
# Path: codeviz\\app.py
# Compare this snippet from codeviz\\predictions.py:
# import json
# import sys
# import time
# from manifest import Manifest
#
# sys.path.append(__file__ + "/..")
# from common import module_codes, module_deps, module_categories, data_dir, cur_dir
#
# gold_annots = json.loads(open(data_dir / "gold_annotations.js").read().replace("let gold_annotations = ", ""))
#
# M = Manifest(
# client_name = "openai",
# client_connection = open(cur_dir / ".openai-api-key").read().strip(),
# cache_name = "sqlite",
# cache_connection = "codeviz_openai_cache.db",
# engine = "code-davinci-002",
# )
#
# def predict_with_retries(*args, **kwargs):
# for _ in range(5):
# try:
# return M.run(*args, **kwargs)
# except Exception as e:
# if "too many requests" in str(e).lower():
# print("Too many requests, waiting 30 seconds...")
# time.sleep(30)
# continue
# else:
# raise e
# raise Exception("Too many retries")
#
# def collect_module_prediction_context(module_id):
# module_exports = module_deps[module_id]["exports"]
# module_exports = [m for m in module_exports if m != "default" and "complex-export" not in m]
# if len(module_exports) == 0:
# module_exports = ""
# else:
# module_exports = "It exports the following symbols: " + ", ".join(module_exports)
#
# # get module snippet
# module_code_snippet = module_codes[module_id]
# # snip to first 50 lines:
# module_code_snippet = module_code_snippet.split("\\n")
# if len(module_code_snippet) > 50:
# module_code_snippet = "\\n".join(module_code_snippet[:50]) + "\\n..."
# else:
# module_code_snippet = "\\n".join(module_code_snippet)
#
# return {"exports": module_exports, "snippet": module_code_snippet}
#
# #### Name prediction ####
#
# def _get_prompt_for_module_name_prediction(module_id):
# context = collect_module_prediction_context(module_id)
# module_exports = context["exports"]
# module_code_snippet = context["snippet"]
#
# prompt = f"""\\
# Consider the code snippet of an unmodule named.
#
import json
from flask import Flask, render_template, request, send_from_directory
from common import *
from predictions import predict_snippet_description, predict_module_name
app = Flask(__name__)
@app.route('/')
def home():
return render_template('code-viz.html')
@app.route('/data/<path:filename>')
def get_data_files(filename):
return send_from_directory(data_dir, filename)
@app.route('/api/describe_snippet', methods=['POST'])
def describe_snippet():
module_id = request.json['module_id']
module_name = request.json['module_name']
snippet = request.json['snippet']
description = predict_snippet_description(
module_id,
module_name,
snippet,
)
return json.dumps({'description': description})
# predict name of a module given its id
@app.route('/api/predict_module_name', methods=['POST'])
def suggest_module_name():
module_id = request.json['module_id']
module_name = predict_module_name(module_id)